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1. Introduction

1.1. Motivation. Number theory is a branch of mathematics that involves the study of integers. Its
influence is vast, not just throughout mathematics, but also in realms such as physics, computer science
and cryptography. Originating from problems in number theory, the method of exponential sums is a
powerful tool that enables proofs of many results in the field. My research objective is to investigate
different types of exponential sums and character sums and their applications in number theory and related
fields.

An exponential sum is a finite sum of the form S(P ) =
∑
n

e2πif(n), where {f(n)} is a finite sequence

of real numbers as n runs over all integers (or some of them) on a certain interval, and P is the number of
summands [28]. Over a finite field of characteristic p, we can replace the sequence by f(x)/p, where f(x)
is a function on the field. The first example of an exponential sum was due to Gauss in his book in 1801
Disquisitions Arithmeticae [11], where he introduced the quadratic Gauss sum.

A character sum has the form
∑
n

χ(n), where χ is a multiplicative character taken over a range in a

finite field of characteristic p (or a finite ring). Character sums are closely linked to exponential sums; for

instance, this can be seen in the Gauss sum gm(χ) =
k−1∑
n=0

χ(n)e2πimn/k, which was introduced by Dirichlet

in his studies of arithmetic progression [6]. In fact, one sees that the Gauss sum can be viewed as the
discrete Fourier transform of the character χ at m. This realization can be further generalized in other
exponential or character sums to give a useful perspective to study an exponential function of interest by
understanding its Fourier transform with a character. This is one of the main reasons why exponential and
character sums would naturally arise in various settings. For example, in the finite field setting, functions
including the exponential functions can be expressed using the set of additive characters (or multiplicative
characters together with the delta function at 0), whose coefficients can be computed using discrete Fourier
transforms. This proves to be extremely useful in working with functions over finite fields.

The general framework surrounding exponential and character sums has been continually developed to
solve a wide range of problems—from the interface of algebraic geometry, number theory and classical
analysis of Fourier transforms and convolutions, to applications in combinatorics and discrete mathematics.
The list of applications is immense, but to name a few: Gauss and Jacobi sums in the counting of points on
variety over finite fields and the study of corresponding zeta functions [32], the study of cyclotomic fields
[31], the developments of reciprocity laws [16], the study of power residue distributions [2, 30], Kloosterman
sum and its applications in analytic number theory [28, 20]; for instance, in the constructions of families of
Ramanujan graphs [22], hypergeometric character sums in the developments of hypergeometric functions
over finite fields, and relation to traces of Hecke operators [12, 8, 23, 9].

My dissertation work involves the study of the Weil sum, a character sum over finite fields originat-
ing from the study of cross-correlation functions in information theory. Various aspects of the Weil sums
in terms of bounds, number of distinct values (called the Weil spectrum) and divisibility are of interest
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due to their applications to equivalent problems in information theory (in sequence design, remote sens-
ing, and synchronization), coding theory (weight distribution of p-arry cyclic error-correcting codes), and
cryptography (s-boxes of symmetric key cryptosystems); see section 2.2 discussion for more details.

In 1971, Tor Helleseth formulated two conjectures concerning two ideas: The presence of zero value in
the Weil spectrum (The Vanishing Conjecture), and the criteria for when the Weil spectrum contains more
than three values (The Three-valued Conjecture) [14]. Until now, these two conjectures remain unsolved,
except for some special cases. My work uses tools from algebraic number theory, finite fields, and character
theory to address these conjectures, and to expand the literature knowledge of the Weil sum.

1.2. Outline of statement. My main contributions are as follows:
• I proved the Helleseth Vanishing Conjecture in the case of Niho exponents (defined below) for all
odd characteristics.
• I derived bounds on the Weil sum and gave an exact formula for the Weil sum at specific roots of
unity.
• I conjectured a criterion for when the Weil spectrum contains at least five values and showed that
it is true for a class of Weil sum.

Here is the outline of my research statement: In section 2, I discuss some background on the Weil sum,
the connection to different areas, and open conjectures surrounding it. In section 3, I explain my result of
the Helleseth Vanishing Conjecture for the case of Niho exponents in odd characteristics. I then propose a
new conjecture on the five-valued property for the Weil sum and discuss some progress made towards this.
Section 4 contains future directions of this project, followed by a list of citations.

2. Background: Weil Sum and the Helleseth Conjectures

2.1. The Weil sum. Our finite field setting is as follows: Let F be a finite field of characteristic p and
size q = pn. Let µ : F → C be the canonical additive character, i.e., µ(x) = ζ

TrF/Fp (x)
p , where ζp = e2πi/p is

a pth root of unity and TrF/Fp
(x) is the absolute trace function from F → Fp. If L is an extension of F , i.e

|L|= qm for some nonnegative integer m, then we take µ(x) = ζ
TrF/Fp (TrL/F (x))
p where TrL/F (x) is the trace

function from L→ F .
We are interested in a character sum of binomials, let’s say over F , of the form∑

y∈F
µ(ayd + bye),(2.1)

where a, b ∈ F× and d 6= e. We say d is an invertible exponent over F if gcd(d, q − 1) = 1. In such case
the power mapping x 7→ xd permutes the elements of F .

If d and e are invertible over F then we can reparameterize the character sum above by setting y =
a−1/dx1/e to obtain ∑

x∈F
µ(xd/e + ba−e/dx).(2.2)

So it is natural to define the Weil sum for each a ∈ F as follows:

WF,s(a) =
∑
x∈F

µ(xs − ax).

One observes that

WF,s(0) =
∑
x∈F

µ(xs) =
∑
x∈F

µ(x) = 0,(2.3)

since the map x 7→ xs permutes the elements of F .
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2.2. Connections to other problems in number theory and related fields. Properties of the Weil
sum including its values, number of values over the finite field, and its bounds are still not well understood.
First, these aspects are certainly of interest from a purely number-theoretic standpoint. We note that in
eq. (2.1) and eq. (2.2), if d = 1 and e = q − 2, then we obtain the Kloosterman sum

∑
x∈F×

µ(ax+ bx−1) =

WF,q−2(ab)−1. The Kloosterman sum has many important applications in analytic number theory; see [20].
Second, questions associated to these aspects can also be translated to equivalent open problems in current
research in cryptography, coding and information theory. For instance, in sequence design in information
theory, the cross-correlation function between two p-ary maximal linear recursive sequences (called p-ary
m-sequences; p-ary means the terms are taken over a finite field of characteristic p) measures how similar
they are, and can be realized as a character sum, specifically as the Weil sum plus (−1). One important
criterion that makes such sequences useful in remote sensing and communications is that they should have
low cross-correlation (see [14, 27, 13, 29, 10, 24, 3, 4, 15]).

In coding theory, p-ary m-sequence (by restricting to a finite subsequence) above can be regarded as
a codeword in the p-ary cyclic code. We can define the Hamming weight of a codeword to measure the
number of substitutions to change one string to another. We can relate this weight to the cross-correlation
function, which in turn relates to the Weil sum. We are interested in the distinct values of these weights,
and the number of the weights, and hence the corresponding properties of the Weil sum (see [25, 5, 7] for
more details).

2.3. Properties and open conjectures. Since WF,s(a) is a sum of roots of unity, WF,s(a) is an algebraic
integer. One may ask when the sum becomes a rational integer. In fact, Tor Helleseth has stated the
necessary and sufficient conditions for WF,s(a) to be a rational integer for every a ∈ F in the following
theorem [14].

Theorem 2.1 (Helleseth). WF,s(a) ∈ Z for all a ∈ F× if and only if s ≡ 1 (mod p− 1).

It is natural to wonder what kind of values one would get from the Weil sum. We have seen in eq. (2.3)
that the WF,s(a) is always 0 at a = 0, and interestingly, this presence of zero value is not obvious for
nonzero elements a. We say that s is singular if there is an a ∈ F× such that WF,s(a) = 0. In 1971, based
on numerous computations on the cross-correlation function, Tor Helleseth proposed the conjecture [13, 14]
that this presence of zero value always held.

Conjecture 2.2 (Helleseth Vanishing Conjecture, [13, 14]). If q = |F |> 2 and s is an invertible exponent
over F such that s ≡ 1 (mod p− 1), then s is singular.

The next questions of interest would be how many distinct values WF,s(a) takes as a ranges over F , and
what they are. We define the Weil spectrum for some fixed s to be the set {WF,s(a) | a ∈ F×}, and say
that it is r-valued if |{WF,s(a) | a ∈ F×}|= r.

If s is a power of p modulo (q − 1), we call s to be degenerate. For any degenerate power s, we know
that WF,s(a) takes two values via a theorem by Helleseth [14].

Theorem 2.3 (Helleseth [14]). If s is degenerate, WF,s(a) is two-valued over F where

WF,s(a) =

{
q if a = 1,

0 otherwise

If s is nondegenerate, then WF,s(a) takes at least three values over F×.

Now, the natural question is: When exactly is the Weil spectrum three-valued? In the same paper
that Helleseth proposed the Vanishing Conjecture in 1971, he also gave another conjecture for when this
three-valued property is never met [13, 14].
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Conjecture 2.4 (Helleseth Three-valued Conjecture [13, 14]). Let F be a finite field of characteristic p.
If [F : Fp] is a power of 2, then for any invertible exponent s, the spectrum of the Weil sum WF,s(a) is not
three-valued.

In comparison to the Vanishing Conjecture, more progress has been made to the Three-valued Conjecture
using various approaches from coding theory, cryptography and number theory [3, 4, 15, 25, 5, 7, 17, 1, 18,
19]. Currently, only ten families of three-valued Weil sum are known [1, Table 1], and these are conjectured
to be the only ones that occur. The cases of characteristic 2 and 3 were proven by Daniel Katz in [17, 18].

3. Main Results

We are interested in the properties and open conjectures surrounding the Weil sum in the setting of Niho
exponent. For a finite field L of order q = p2n, an exponent s is called a Niho exponent if s is not a
power of p (mod p2n − 1) and s ≡ pj (mod pn − 1). Niho exponent was first introduced by Yoji Niho in
1972 in his PhD thesis on the cross-correlation function between an m-sequence and its d-decimation [27].
Since then further research has been done using Niho exponents, and it has resulted in various applications
in coding theory, sequence design, and cryptography [21].

For the rest of our discussion, we take such field L of order p2n, where p is an odd prime. Let s be
an invertible Niho exponent over L. Then s = 1 + k(pn − 1) for some integer k. If k = 0 or 1 then s is
degenerate. So in general, we can take 2 ≤ k ≤ pn, since k+pn+1 gives the same exponent s (mod p2n−1)
as k over L.

3.1. The Helleseth Vanishing Conjecture for the case of Niho exponents. As mentioned, partial
results on the Vanishing Conjecture are limited compared to the Three-valued Conjecture. It should be
noted that if the spectrum is three-valued, then one of them must be 0; this is a result by D. Katz [17].

In 2004, Charpin proved the Helleseth Vanishing Conjecture for Niho exponents for fields of characteristic
2 [5]. My first main result extends this to all odd characteristic, i.e. proving the Helleseth Vanishing
Conjecture for Niho exponents in all finite fields.

Theorem 3.1 (L.Nguyen [26]). Suppose that s is an invertible Niho exponent over L. Then s is singular.

3.2. Bounds on the Weil sum and some special values. In building towards the proof of theorem 3.1,
we derive some intermediate results that give the following bounds on the Weil sum.

Theorem 3.2 (L.Nguyen [26]). We have the following bounds on WL,s(a):
(1) If a ∈ L, then WL,s(a) ≥ −pn.
(2) If a ∈ F , then WL,s(a) ≥ 0.
(3) In particular, WL,s(1) ≥ pn. If pn ≡ 2 (mod 3), then WL,s(1) ≥ 3pn.

At some roots of unity in the finite field L we can give a formula for the Weil sum WL,s(a). This is useful
for my next result.

Proposition 3.3 (L.Nguyen [26]). Let 2 ≤ k ≤ pn, d1 = gcd(k, pn + 1), and d2 = gcd(k − 1, pn + 1). Let
s = 1 + k(pn − 1) be an invertible Niho exponent over L, and t be a positive integer with t | pn + 1. Let ζt
be a primitive t-th root of unity in L. For i = 1 or 2, let

δi,t =

 1 if t | p
n + 1

di
,

0 otherwise.

Then

WL,s(ζt) =

{
pn(d1 + d2 − 2) if t = 1,
pn(d1δ1,t + d2δ2,t − 1) otherwise.

4



3.3. The Weil spectrum: new conjecture and partial result. In section 2.2, we discuss why the
Weil spectrum is of interest. In a similar inquiry as the Three-valued Conjecture, I propose the following
conjecture on when the Weil spectrum has at least five values, based on computations done in SageMath.

Conjecture 3.4. Let s = 1 + k(pn − 1) be an invertible Niho exponent over L, d1 = gcd(k, pn + 1), and
d2 = gcd(k − 1, pn + 1). If either

(i) d1 + d2 ≥ 5, or
(ii) d1 + d2 = 3 and pn ≡ 11 (mod 12),

satisfies, then the Weil spectrum over L is at least five-valued.
Moreover, in case (i), the five values are {0,−pn, pn, 2αpn, (2β + 1)pn} where α, β ≥ 1 are integers. In

case (ii), at least four values are {0,−pn, pn, 2pn}.

A special case of the condition d1 + d2 ≥ 5 in conjecture 3.4 is pn ≡ 2 (mod 3). Hence, we can restate
part (i) of the conjecture with simpler assumptions as follows.

Conjecture 3.5. Let s = 1 + k(pn − 1) be an invertible Niho exponent over L. If pn ≡ 2 (mod 3), then
the Weil spectrum over L has at least the five values {0,−pn, pn, 2αpn, (2β + 1)pn} for integers α, β ≥ 1.

My work was to, first, show that case (i) of conjecture 3.4 holds true for a class of Weil sum.

Theorem 3.6 (L.Nguyen [26]). Let n ≥ 2 be an integer. Let k ≥ 2 be an integer such that k <
p

2
+ 1, and

s = 1+k(pn−1) be an invertible Niho exponent over L. Let d1 = gcd(k, pn+1), and d2 = gcd(k−1, pn+1).
If d1 + d2 ≥ 5, then the Weil spectrum over L is at least five-valued. Moreover, four of those five values are
{0,−pn, 2αpn, (2β + 1)pn} where α, β ≥ 1.

Remark 3.7. Note that for k = 0 or 1, the exponent s is degenerate, so we take k ≥ 2. For the case of

n = 1 in theorem 3.6, taking k such that k <
p1/2

2
+ 1 would yield the same conclusion.

Second, I showed that case (ii) of conjecture 3.4 is true.

Theorem 3.8 (L.Nguyen [26]). Given the assumptions of 3.4 where case (ii) satisfies, the Weil spectrum
over L is at least five-valued. Moreover, four of those five values are {0,−pn, pn, 2pn}.

4. Future Work

There are some natural next-step projects arise from my work. I am working on some of these, and hope
to continue with more in the future.

(1) The general case of the Helleseth Vanishing Conjecture remains open. I hope to be able to extend
the proof to all (non-Niho) exponents.

(2) Case (i) of conjecture 3.4 for other invertible exponents s is still open. Also, the fifth value pn in
case (i) is conjectured to be in the spectrum, based on our computation data. These two aspects
amount to another project.

(3) A probabilistic approach to study the likelihood that the Weil spectrum takes a certain value is of
interest. As discussed in section 2.2, the question of determining certain values of the Weil sum has
direct applications to study the cross-correlation functions in information theory and the Hamming
weights in coding theory. Some directions for this can start from averaging properties of the Weil
sum known as the m-th power moments, i.e the summation of all Weil sums in the finite field raised
to a positive integer m. For the first few moments there are some results in [17, Proposition 3.1]
and [26, Lemma 2.3].
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